
Difficulty Controllable and Scalable Constrained
Multi-objective Test Problems

Zhun Fan
Department of Electronic Engineering

Shantou University
Guangdong, Shantou 515063

Huibiao Lin
Department of Electronic Engineering

Shantou University
Guangdong, Shantou 515063

Wenji Li
Department of Electronic Engineering

Shantou University
Guangdong, Shantou 515063

Kaiwen Hu
Department of Electronic Engineering

Shantou University
Guangdong, Shantou 515063

Xinye Cai
College of Computer Science and
Technology, Nanjing University of

Aeronautics and Astronautics
Jiangsu, Nanjing 210016

Haibin Yin
School of Mechanical and Electronic

Engineering, Wuhan University of Technology
Wuhan, Hubei 430070

Abstract—In this paper, we propose a general toolkit to
construct constrained multi-objective optimisation problems
(CMOPs) with three different kinds of constraint functions.
Based on this toolkit, we suggest eight constrained multi-objective
optimisation problems named CMOP1-CMOP8. As the ratio
of feasible regions in the whole search space determines the
difficulty of a constrained multi-objective optimisation problem,
we propose four test instances CMOP3-6, which have very low
ratio of feasible regions. To study the difficulties of proposed
test instances, we make some experiments with two popular
CMOEAs - MOEA/D-CDP and NSGA-II-CDP, and analysed
their performances.

Index Terms—Constrained Multi-objective Evolutionary Algo-
rithm, Constrained Multi-objective Optimisation problem.

I. INTRODUCTION

In engineering optimisation problems, most of them usually
involve simultaneous optimisation of multiple and conflict
objectives with severe constraints. Without loss of generality,
an constrained multi-objective optimisation problem (CMOP)
can be defined as follows:

minimize F(x) = (f1(x), . . . , fm(x))
T (1)

subject to gi(x) ≥ 0, i = 1, . . . , q

hj(x) = 0, j = 1, . . . , p

x ∈ Ω

where F(x) = (f1(x), f2(x), . . . , fm(x))T ∈ Rm is a m-
dimensional objective vector, gi(x) ≥ 0 define q inequal-
ity constraints, hj(x) = 0 define p equality constraints.
Ω =

∏n
i=1[ai, bi] ⊆ Rn is the decision space, and x =

(x1, x2, . . . , xn)
T ∈ Rn is a n-dimensional decision variable.

A solution x is said to be feasible if it meets gi(x) ≥ 0, i =
1, . . . , q and hj(x) = 0, j = 1, . . . , p at the same time.
For two feasible solution x1 and x2, solution x1 is said to
dominate x2 if fi(x1) ≤ fi(x

2) for each i ∈ {1, . . . ,m}
and fj(x

1) ≤ fj(x
2) for at least j ∈ {1, . . . ,m}, denotes

as x1 � x2. For a feasible solution x∗ ∈ Ω, if there is
no other feasible solution x ∈ Ω dominating x∗ , x∗ is

said to be feasible Pareto optimal solution. The set of all the
feasible Pareto optimal solutions is called the Pareto optimal
set(PS). Mapping the PS into the objective space obtains a
set of objective vectors, denotes as Pareto front (PF ), where
PF = {F(x) ∈ Rm|x ∈ PS}.

At present, most researchers concentrate on unconstrained
multi-objective evolutionary algorithms (UMOEAs) and have
achieved rapid research progress in them. Usually, UMOEAs
can be divided into three categories: Pareto-dominance
(e.g., NSGA-II[1], PAES-II[2] and SPEA-II[3]), decomposi-
tion based (e.g., MOEA/D[4], MOEA/D-DE[5], MOEA/D-
M2M[6] and EAG-MOEA/D[7]), and indicator based methods
(e.g., IBEA[8], R2-IBEA[9],SMS-EMOA[10] and HypE[11]).
However, not enough attentions have been paid on constrained
multi-objective evolutionary algorithms (CMOEAs). Actually,
constraints greatly increase the difficulty of multi-objective
optimisation problems, especially the ones with nonlinear
equality or unequality constraints. As far as we know, most ex-
isting benchmark problems for multiobjective optimisation are
unconstrained, such as ZDT[12] , DTLZ[13] and WFG[14].
Only two test suites (CTP[15] and CF[16]) are designed
for constrained multi-objective optimization problems. In ad-
dition, the feasible ratio for both test suites are high and
uncontrollable. The construction of new test suites for CMOPs
thus becomes very necessary.

The rest of this paper is organised as follows. Section II
introduces the construction method for generating CMOPs.
Section III suggests a set of test problems. In the following
Section VI, we compare the performance of two CMOEAs i.e.,
MOEA/D-CDP and NSGA-II-CDP by experimental study, and
Section V concludes the paper.

II. CONSTRUCTION TOOLKIT

As we all known, constrained multi-objective optimisation
problems include two parts, one part is the objective function
and the other is constraint function. In order to facilitate



analysing the Pareto front and Pareto set of constrained multi-
objective optimisation problems, it is necessary to make some
necessary assumptions. In terms of objective functions, Li,
et al [17] suggested a general framework for constructing
objective function of multi-objective optimisation problems as
follows:

fi(x) = αi(x1:m−1) + βi(x1:m−1, xm:n) (2)

where x1:m−1 = (x1, . . . , xm − 1)T , xm:n = (xm, . . . , xn)T

are two sub-vectors of x = (x1, . . . , xn)T . The function
αi(x1:m−1) is called shape function, and βi(x1:m−1, xm:n) is
called nonnegative distance function. The objective function
fi(x), i = 1, . . . ,m is the sum of shape function αi(x1:m−1)
and nonnegative distance function βi(x1:m−1, xm:n). We adopt
this general framework as the objective function of CMOPs. It
is worth noting that this general framework is easy to scale to
different Pareto front. Almost all of the existing unconstrained
multi-objective optimisation problems have objective functions
that can be expressed by Formula 2.

In terms of constraint functions, we define three basic types
of constraint functions. As the equality constraint can be
transformed into inequality constraint, here we only consider
the unequality type. The first type of constraint function is
defined as follows:

Φ(x1:m−1) ≥ 0 (3)

In order to facilitate description, we denote Formula 3 as Type-
I. The constraint of Type-I only limits the sub-vector x1:m−1
which decides the shape of Pareto front. In another word, the
constraint of Type-I can change the shape of Pareto front.
More specifically, the Pareto front with Type-I constraint is
a subset of the Pareto front without constraints. It it worth
noting that the ratio of feasible area in the search space
can be controlled by setting the sub-vector x1:m−1 into a
small range. For example, we can define a constrained multi-
objective optimisation problem as follows:

minimize f1(x) = x1 + g(x)

minimize f2(x) = 1− x21 + g(x)

g(x) =
∑n

i=2 (xi − sin(0.5πx1))
2

subject to c(x) = sin(aπx1)− b ≥ 0

xi ∈ [0, 1]

(4)

where a > 0, b ∈ [0, 1], in order to facilitate the drawing
of the feasible area, we set a = 10, b = 0.5 and n = 2.
The Pareto front without constraint and the Pareto front with
Type-I constraint are shown in the left of Figure 1. The ratio
of feasible area can be controlled by parameters a and b, if
b = 1.0, x1 will be limited to some discrete values, as shown
in the right of Figure 1, and the number of discrete values of
x1 is controlled by a.

The second type of constraint function is defined as follows:

Ψ(x1:m−1, xm:n) ≥ 0 (5)

we represent this constraint function as Type-II. This con-
straint function limits the nonnegative distance function
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Fig. 1. Illustrations on the influence of Type-I constraint.

βi(x1:m−1, xm:n) and decides the feasible ratio in the whole
search space. So, we can obtain some CMOPs with low
ratio of feasible solutions by restricting βi(x1:m−1, xm:n) in
a narrowed range . For example, we can define a CMOP as
follows:

minimize f1(x) = x1 + g(x)

minimize f2(x) = 1− x21 + g(x)

g(x) =
∑n

i=2 (xi − sin(0.5πx1))
2

subject to c1(x) = g(x)− a ≥ 0

c2(x) = b− g(x) ≥ 0

n = 30, xi ∈ [0, 1]

(6)

where a ≥ 0,b ≥ 0 and b ≥ a. The Pareto front without
constraint, the Pareto front with Type II constraint and the
feasible area in the objective space are shown in Figure 2. It is
worth noting the feasible area can be controlled by parameters
a and b. If b − a = 0.01, the feasible area is very small as
shown in the left of Figure 2, if b− a = 0.1, the feasible area
is bigger than that of b − a = 0.01 as shown in the right of
Figure 2.
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Fig. 2. Illustrations on the influence of Type-II constraint.

The third type of constraint function is defined as follows:

Θ(f1:m) ≥ 0 (7)

where f1:m = (f1, . . . , fm)T , we denote this constraint
function as Type-III. It simultaneously influences the shape
of Pareto front and the ratio of feasible solutions in the
whole search space. For example, in [18], we design a set of
constraints in the objective space, the infeasible area is shown
in the left of Figure 3. It is worth noting that we can obtain



different kinds of constraint shapes in the objective space by
setting parameters as shown in the right of Figure 3.
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Fig. 3. Illustrations on the influence of Type-III constraint.

From the above definition of constraint functions, it is easy
to tell that all of CTP[15] test instances belong to Type-III.
For CF [16] test instances, CF1-CF3 and CF8-CF10 belong to
Type-III, and CF4-CF7 belong to Type-II. It is worth noting
that the above three types of constraint functions can be easy
to scale to difficulty controllable CMOPs.

III. SCALABLE AND CONTROLLABLE CONSTRAINED
MULTI-OBJECTIVE OPTIMISATION PROBLEMS

In this section, we proposed eight test instances with dif-
ferent kinds of constraint functions - CMOP1-CMOP8 using
the above toolkit.
• Test Problem 1 - CMOP1:

minimize f1(x) = x1 + g1(x)

minimize f2(x) = 1− x21 + g2(x)

g1(x) =
∑
j∈J1

(xj − sin(0.5πx1))
2

g2(x) =
∑
j∈J2

(xj − cos(0.5πx1))
2

subject to c(x) = sin(aπx1)− 0.5 ≥ 0

J1 = {j|j is odd and 2 ≤ j ≤ n}
J2 = {j|j is even and 2 ≤ j ≤ n}
a = 20, n = 30, xj ∈ [0, 1]

(8)

Here, the parameter a controls the number of discrete seg-
ments. A smaller a will generate fewer segments. The con-
straint function belongs to Type-I, and the Pareto front of
CMOP1 is discrete and concave as shown in Figure 4.
• Test Problem 2 - CMOP2:

minimize f1(x) = x1 + g1(x)

minimize f2(x) = 1−√x1 + g2(x)

g1(x) =
∑
j∈J1

(xj − sin(0.5πx1))
2

g2(x) =
∑
j∈J2

(xj − cos(0.5πx1))
2

subject to c(x) = sin(aπx1)− 0.5 ≥ 0

J1 = {j|j is odd and 2 ≤ j ≤ n}
J2 = {j|j is even and 2 ≤ j ≤ n}
a = 20, n = 30, xj ∈ [0, 1]

(9)
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Fig. 4. The Pareto front of CMOP1

Test instance CMOP2 is similar to CMOP1 and the difference
between them is the shape of Pareto front. The Pareto front
of CMOP2 is discrete and convex as shown in Figure 5.
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Fig. 5. The Pareto front of CMOP2

• Test Problem 3 - CMOP3:

minimize f1(x) = x1 + g1(x)

minimize f2(x) = 1− x21 + g2(x)

g1(x) =
∑
j∈J1

(xj − sin(0.5πx1))
2

g2(x) =
∑
j∈J2

(xj − cos(0.5πx1))
2

subject to c1(x) = (a− g1(x)) ∗ (g1(x)− b) ≥ 0

c2(x) = (a− g2(x)) ∗ (g2(x)− b) ≥ 0

J1 = {j|j is odd and 2 ≤ j ≤ n}
J2 = {j|j is even and 2 ≤ j ≤ n}
a = 0.51, b = 0.5, n = 30, xj ∈ [0, 1]

(10)

The constraint functions of CMOP3 belong to Type-II. Where,
a and b control the ratio of feasible solutions in the whole
search space, and a >= b. The smaller value of a − b will



generates a lower ratio of feasible solutions. The Pareto front
of CMOP3 is concave as shown in Figure 6.
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Fig. 6. The Pareto front of CMOP3

• Test Problem 4 - CMOP4:

minimize f1(x) = x1 + g1(x)

minimize f2(x) = 1−√x1 + g2(x)

g1(x) =
∑
j∈J1

(xj − sin(0.5πx1))
2

g2(x) =
∑
j∈J2

(xj − cos(0.5πx1))
2

subject to c1(x) = (a− g1(x)) ∗ (g1(x)− b) ≥ 0

c2(x) = (a− g2(x)) ∗ (g2(x)− b) ≥ 0

J1 = {j|j is odd and 2 ≤ j ≤ n}
J2 = {j|j is even and 2 ≤ j ≤ n}
a = 0.51, b = 0.5, n = 30, xj ∈ [0, 1]

(11)

CMOP4 test instance is transformed from CMOP3, and the
Pareto front of CMOP4 is convex as shown in Figure 7.
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Fig. 7. The Pareto front of CMOP4

• Test Problem 5 - CMOP5:



minimize f1(x) = x1 + g1(x)

minimize f2(x) = 1− x21 + g2(x)

g1(x) =
∑
j∈J1

(xj − sin(0.5πx1))
2

g2(x) =
∑
j∈J2

(xj − cos(0.5πx1))
2

subject to c1(x) = (a− g1(x)) ∗ (g1(x)− b) ≥ 0

c2(x) = (a− g2(x)) ∗ (g2(x)− b) ≥ 0

c3(x) = sin(cπx1)− 0.5 ≥ 0

J1 = {j|j is odd and 2 ≤ j ≤ n}
J2 = {j|j is even and 2 ≤ j ≤ n}
a = 0.51, b = 0.5, c = 20, n = 30, xj ∈ [0, 1]

(12)

The constraint functions of CMOP5 are hybrid with Type-
I and Type-II, and the feasible area in objective space is
very small. We can set the three parameters a, b and c to
generate difficulty controllable test instances. The Pareto front
of CMOP5 is discrete and concave as shown in Figure 8.
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Fig. 8. The Pareto front of CMOP5

• Test Problem 6 - CMOP6:

minimize f1(x) = x1 + g1(x)

minimize f2(x) = 1−√x1 + g2(x)

g1(x) =
∑
j∈J1

(xj − sin(0.5πx1))
2

g2(x) =
∑
j∈J2

(xj − cos(0.5πx1))
2

subject to c1(x) = (a− g1(x)) ∗ (g1(x)− b) ≥ 0

c2(x) = (a− g2(x)) ∗ (g2(x)− b) ≥ 0

c3(x) = sin(cπx1)− 0.5 ≥ 0

J1 = {j|j is odd and 2 ≤ j ≤ n}
J2 = {j|j is even and 2 ≤ j ≤ n}
a = 0.51, b = 0.5, c = 20, n = 30, xj ∈ [0, 1]

(13)

CMOP6 test instance is transformed from CMOP5, and the
Pareto front of CMOP6 is discrete and convex as shown in
Figure 9.
• Test Problem 7 - CMOP7:
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Fig. 9. The Pareto front of CMOP6



minimize f1(x) = x1 + g1(x)

minimize f2(x) = 1− x21 + g2(x)

g1(x) =
∑
j∈J1

(xj − sin(0.5πx1))
2

g2(x) =
∑
j∈J2

(xj − cos(0.5πx1))
2

subject to ck(x)=((f1−pk)cosθ−(f2−qk)sinθ)2/a2

+((f1 − pk)sinθ + (f2 − qk)cosθ)2/b2 ≥ 1

c10(x) = sin(cπx1)− 0.5 ≥ 0

p = [0, 1, 0, 1, 2, 0, 1, 2, 3]

q = [1.5, 0.5, 2.5, 1.5, 0.5, 3.5, 2.5, 1.5, 0.5]

J1 = {j|j is odd and 2 ≤ j ≤ n}
J2 = {j|j is even and 2 ≤ j ≤ n}
a2 = 0.1, b2 = 0.4, θ = −0.25π

c = 20, n = 30, xj ∈ [0, 1], k = 1, . . . , 9

(14)

The constraint functions of test instance CMOP7 are hybrid
with Type-I and Type-III. The parameter c controls the number
of discrete segments. Constraint functions ck(x) construct k
ellipsoids in the objective space and each ck(x) consists of
five parameters (θk, ak, bk, pk, qk). Here, all of the ellipsoids
have the same long axis a, minor axis b and counterclockwise
rotation angle θ. We can adjust the centre of each ellipsoid by
setting p and q. It is worth noting that we can obtain many
different kinds of constraint shapes in the objective space by
tuning five parameters (θk, ak, bk, pk, qk) as shown in Figure
3 . The Pareto front of CMOP7 is discrete and concave as
shown in Figure 10.

• Test Problem 8 - CMOP8:
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Fig. 10. The Pareto front of CMOP7



minimize f1(x) = x1 + g1(x)

minimize f2(x) = 1−√x1 + g2(x)

g1(x) =
∑
j∈J1

(xj − sin(0.5πx1))
2

g2(x) =
∑
j∈J2

(xj − cos(0.5πx1))
2

subject to ck(x)=((f1−pk)cosθ−(f2−qk)sinθ)2/a2

+((f1 − pk)sinθ + (f2 − qk)cosθ)2/b2 ≥ 1

c10(x) = sin(cπx1)− 0.5 ≥ 0

p = [0, 1, 0, 1, 2, 0, 1, 2, 3]

q = [1.5, 0.5, 2.5, 1.5, 0.5, 3.5, 2.5, 1.5, 0.5]

J1 = {j|j is odd and 2 ≤ j ≤ n}
J2 = {j|j is even and 2 ≤ j ≤ n}
a2 = 0.1, b2 = 0.4, θ = −0.25π

c = 20, n = 30, xj ∈ [0, 1], k = 1, . . . , 9

(15)

CMOP8 test instance is transformed from CMOP7 and the
Pareto front of CMOP8 is discrete and convex as shown in
Figure 11. It is worth noting that for CMOP7-8, we only draw
the infeasible area of Type-III constraint in the objective space.
Because the Type-I constraint is very difficult to depict in the
objective space, especially, when the dimension of decision
variables is very large.

IV. EXPERIMENTAL STUDY

A. Experimental Settings

To verify the difficulties of the suggested test instances in
the Section III, we applied two commonly used CMOEAs (i.e.,
MOEA/D-CDP and NSGA-II-CDP) in our experiments. The
detailed parameter settings are summarised as follows.

1) Setting for reproduction operators: The mutation proba-
bility Pm = 1/n (n is the number of decision variables) and
its distribution index is set to be 20. For the DE operator, we
set CR = 1.0 and f = 0.5 .

2) Population size: N = 200.



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

f1

f2

 

 

PF without constraint

PF with constraint

Infeasible area

Fig. 11. The Pareto front of CMOP8

3) Number of runs and stopping condition: Each algorithm
runs 30 times independently on each test problems. The
algorithm stops until 300 000 function evaluations.

4) Neighborhood size: T = 20.
5) Probability use to select in the neighbourhood: δ = 0.9.
6) The maximal number of solutions replaced by a child:

nr = 2.

B. Performance Metric

To measure the performance of MOEA/D-CDP and NSGA-
II, we use two metrics - inverted generation distance (IGD)[19]
and relative hypervolume indicator (I−H ) [20] and the detail
definitions of IGD and I−H are given as follows:
• Inverted Generational Distance (IGD):

The IGD metric simultaneously reflects the performance of
convergence and diversity, and it is defined as follows:

IGD(P ∗, A) =

∑
y∗∈P∗

d(y∗,A)

‖P∗‖

d(y∗, A) = min
y∈A
{
√∑m

i=1(y∗i − yi)2}
(16)

Where P ∗ is the ideal Pareto front set, A is an approximate
Pareto front set achieved by evolutionary multi-objective al-
gorithm. IGD metric denotes the distance between P ∗ and A.
• Relative Hypervolume Indicator (I−H ):

I−H simultaneously considers the distribution of the obtained
Pareto front A and its vicinity to the true Pareto front.
IH(P ∗, R) is defined as the volume enclosed by P ∗ and the
reference vector R = (R1, . . . , Rm). IH(A,R) is defined
as the volume enclosed by A and the reference vector R.
I−H(A,P ∗, R)can be defined as:

I−H(A,P ∗, R) = IH(P ∗, R)− IH(A,R)

IH(P ∗, R) = V olv∈P∗(v)

IH(A,R) = V olv∈A(v)

(17)

Here, V olv∈P∗(v) represents the volume enclosed by solution
v ∈ P ∗ and the reference vector R, and V olv∈A(v) represents

the volume enclosed by solution v ∈ A and the reference
vector R. When computing the above metrics, 200 points are
uniformly sampled from the true PF. The reference point R is
(1.2, 1.2)T for CMOP1, CMOP2, CMOP7 and CMOP8. For
CMOP3-CMOP6, the reference point R is set to (1.6, 1.6)T . It
is worth noting that the smaller values of IGD and I−H represent
the better performance of both diversity and convergency.

C. Experimental Results and Discussions

In order to demonstrate the difficulty levels of the suggested
CMOPs, we test them by using two classic CMOEAs -
MOEA/D-CDP and NSGA-II-CDP. The final population with
the best I−H metric in 30 independent runs are shown in Figure
12. From Figure 12, we can observe that MOEA/D-CDP has
obtained better Pareto fronts on CMOP1, CMOP2, CMOP7
and CMOP8 than NSGA-II-CDP. For CMOP3, CMOP4,
CMOP5 and CMOP6, MOEA/D-CDP and NSGA-II-CDP
have similar Pareto fronts.

The mean values of IGD and I−H are shown in Table I and
Table II, and Wilcoxon’s rank sum test values of IGD and I−H
are at a 0.05 significance level. The IGD metrics of MOEA/D-
CDP on CMOP1, CMOP2, CMOP5, CMOP7 and CMOP8 are
significant better than that of NSGA-II-CDP, and for CMOP4,
NSGA-II-CDP is significant better than MOEA/D-CDP. In
terms of I−H metric, MOEA/D-CDP is significant better than
NSGA-II-CDP on CMOP1, CMOP2, CMOP7 and CMOP8,
and significant worse than NSGA-II-CDP on test instance
CMOP4.

For CMOP3-CMOP6, both methods only acquired a small
part of the true Pareto front. The reason is that CMOP3-
CMOP6 have very low ratio of feasible solutions. In the
framework of MOEA/D-CDP, when an individual is feasible,
it will quickly replace its neighbourhood and then extend to
the whole population by using CDP mechanism. For NSGA-II-
CDP, a feasible solution ranks in the first level, and this will
also replace the infeasible solutions quickly by using CDP
approach. As the feasible area is very narrow, it is very hard
for the population to expand in the narrowed feasible area,
and thus difficult to search for the optimum. From the above
experimental analysis, we can conclude that the suggested test
instances are not easy to solve by using the existing CMOEAs,
and MOEA/D-CDP works better than NSGA-II-CDP on most
test instances.

V. CONCLUSION

Constrained multi-objecitve optimisation problem with low
ratio of feasible solutions is a difficult feature for many exist-
ing CMOEAs. In this work, we propose an construction toolkit
to build difficulty controllable constrained multi-objective test
problems. To verify the difficulties of suggested test instances,
we make some experiments to test the performance of two
popular CMOEAs - MOEA/D-CDP and NSGA-II-CDP. The
experimental results show that the test instances with low ratio
of feasible solutions in the whole search space is not easy to
solve by these two algorithms. To enhance the performance
of two classic CMOEAs - MOEA/D-CDP and NSGA-II-CDP



TABLE I
IGD VALUES OF MOEA/D-CDP AND NSGA-II-CDP.

Instance MOEA/D-CDP NSGA-II-CDP Wilcoxon’s Rank
– Mean Std. Mean Std. p-value h-value

CMOP1 6.46E-03 6.68E-04 7.30E-01 2.94E-01 1.73E-06 1.00E+00
CMOP2 5.78E-03 9.52E-04 7.17E-01 3.23E-01 1.73E-06 1.00E+00
CMOP3 3.53E-01 9.84E-03 3.58E-01 8.71E-02 7.86E-02 0.00E+00
CMOP4 3.14E-01 8.88E-03 2.90E-01 3.82E-02 3.72E-05 1.00E+00
CMOP5 3.49E-01 1.84E-02 3.53E-01 7.37E-02 1.17E-02 1.00E+00
CMOP6 3.18E-01 6.06E-03 3.33E-01 6.87E-02 6.14E-01 0.00E+00
CMOP7 1.99E-01 1.90E-02 1.49E+00 2.06E-01 1.73E-06 1.00E+00
CMOP8 4.25E-02 6.36E-02 1.49E+00 3.07E-01 1.73E-06 1.00E+00

TABLE II
I−H VALUES OF MOEA/D-CDP AND NSGA-II-CDP.

Instance MOEA/D-CDP NSGA-II-CDP Wilcoxon’s Rank
– Mean Std. Mean Std. p-value h-value

CMOP1 6.13E-03 7.67E-04 6.61E-01 8.16E-02 1.73E-06 1.00E+00
CMOP2 7.35E-03 2.64E-03 8.58E-01 1.92E-01 1.73E-06 1.00E+00
CMOP3 3.24E-01 1.41E-02 3.14E-01 3.92E-02 7.86E-02 0.00E+00
CMOP4 3.88E-01 2.43E-02 3.66E-01 5.93E-02 8.73E-03 1.00E+00
CMOP5 2.95E-01 1.44E-02 2.90E-01 2.90E-02 1.59E-01 0.00E+00
CMOP6 3.71E-01 1.97E-02 3.79E-01 6.47E-02 6.58E-01 0.00E+00
CMOP7 2.79E-01 7.89E-03 5.93E-01 0.00E+00 1.73E-06 1.00E+00
CMOP8 8.42E-02 1.31E-01 1.07E+00 2.75E-02 1.73E-06 1.00E+00

on suggested test instances in this work, more works need
to be done in terms of improving CMOEAs’ diversity and
designing new constraint handling mechanisms. The future
research work includes adopting external archives to enhance
the diversity of existing CMOEAs.
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Fig. 12. The final populations with the best I−H metric in 30 independent
runs using MOEA/D-CDP and NSGA-II-CDP
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